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1 Background
Information about external stimuli is thought to be stored in cortical circuits through the change
of synaptic connectivity. When a particular stimulus is repeatedly encountered, the modifications
of network connectivity would lead to changes in neuronal activity. Here we ask what plasticity
rules are consistent with the differences in the statistics of visual response to novel and familiar
stimuli in the inferior temporal cortex, an area underlying the visual object recognition.

We refer the learning rule of synaptic plasticity using the statistic and mathematics methods.
We want to infer the dependence of the presumptive learning rule on postsynaptic firing rate and
the inferred learning rule is appropriate for the real situation.

2 Inferring synaptic plasticity rule
2.1 Introduction
Here we consider a faring rate model with a plasticity rule that modifies the strength of recurrent
synapses as a function of the firing rate of pre- and postsynaptic neurons.

The spikes of neurons are caused by the activities of other neurons. We describe this progress
as the firing rate of neuron ri is determined by its input hi from other neurons via a transfer
function.

ri = Φi(hi) (1)

ri: the firing rate of neuron i with i = 1, . . . , N
N : the number of neurons in the network
hi: the inputs of neuron i
Φi: the transfer function(f − I curve)

The input current hi is the sum of the external input IiX and the recurrent input, which is the
sum of presynaptic firing rates rj , weighted by the synaptic strength Wij .

hi = IiX +

N∑
j=1

Wijrj (2)

ri +∆ri = Φi(hi +∆hi) (3)

∆r can be attained by comparing the firing rate when a monkey faced the novel and familiar
stimuli (the passive viewing task and the dimming-detection task, both tasks include novel and
familiar stimuli)
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Figure 1: A visual response of inferior temporal cortical (ITC) neurons to novel and familiar
stimuli.
a b : mean of firing rate.
c d : maximal of firing rate

Assumption 1 Here we assume that changes in network response are primarily due to changes
in recurrent synapses. This assumption is justified by the observation that differences between
responses to familiar and novel stimuli start to emerge a few tens of milliseconds after the activity
onset(Figure 1).

It is the IiX in the equation that leads to neuronal firings in our recurrent network. The firing
rate will change during a few tens of milliseconds after the activity onset.

hi +∆hi = IiX +

N∑
j=1

(W (ri, rj) + ∆W (ri, rj)) rj (4)

After the subtraction of equation (2) and (4), we can get

∆hi =

N∑
j=1

∆W (ri, rj)rj (5)

2.2 Synaptic plasticity rule
Assumption 2 We assume that the learning rule is a separate function of pre- and postsynaptic
rates

∆Wij = ∆W (ri, rj) = αf(ri)g(rj) (6)

f: refer to presynaptic neurons
g: refer to postsynaptic neurons
At first, we set α = 1.

As we can see, many classical neural plasticity have adopted this assumption.
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The Basic Hebb Rule

τ
dWij

dt
= ri rj (7)

The Covariance Rule

τ
dWij

dt
= (ri − θri) rj (8)

τ
dWij

dt
= ri (rj − θrj ) (9)

The BCM Rule

τ
dWij

dt
= ri rj (rj − θrj ) (10)

Those rules are all theory-driven methods. Can we find a data-driven method? The answer is yes.
Sukbin Lim has done very beautiful work(S. Lim 2015).

But a new problem occurs. If we assume that the connection between neurons is all-to-all, the
sum of postsynaptic neurons is constant. That is

N∑
j=1

g(rj)rj = Const (11)

f(ri) =
∆hi∑N

j=1 g(rj)rj
(12)

So that fi will only be a deformed function of ∆hi. If we have a plot, we will find that they
have a similar shape.

Besides, ∆hi primarily depends on ∆ri, so this rule is mainly determined by the ∆ri.

2.3 Add a random adjacent matrix
If we want to get a more realistic expression of f and g in the situation that neurons are connected
randomly, we can create an adjacent matrix to show the connection of neurons, using 0 and 1 to
refer to connection status. The connected probability is p.

Here is the adjacent matrix C

C = (cij)i,j=1:N (13)

with

cij ∈ 0, 1 (14)

Cij = 1 means that neuron j is connected to neuron i, meanwhile, 0 means no connection.
Therefore, original equations have changed to

∆hi = f(ri)

N∑
j=1

Cijg(rj)rj (15)

As a consequence,
∑N

j=1 Cijg(rj)rj is different for different neurons.
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2.4 Add restriction to the problem
We can get the change of firing rate ∆ri when monkeys are performing two different tasks. But
how can we get f and g or f(ri) and g(ri) for every ri? It only has N equations, but has 2N
unknowns.

N equations:



∆h1 = f(r1)
∑N

j=1 C1jg(rj)rj
...

∆hi = f(ri)
∑N

j=1 Cijg(rj)rj
...

∆hN = f(rN )
∑N

j=1 CNjg(rj)rj

(16)

2N unknowns:

f =



f(r1)
...

f(ri)
...

f(rN )

 g =



g(r1)
...

g(ri)
...

g(rN )

 (17)

It is impossible to solve this problem unless we have other restrictions. We must add more
restrictions to get f and g.

We simplify the denote of f and g as follows:

f(r1)
...

f(ri)
...

f(rN )

 =



f1
...
fi
...
fN





g(r1)
...

g(ri)
...

g(rN )

 =



g1
...
gi
...
gN

 (18)

Here we want get more smooth f and g. That is to minimize

N−1∑
i=1

(
fi+1 − fi
ri+1 − ri

)2

+

N−1∑
i=1

(
gi+1 − gi
ri+1 − ri

)2

(19)

and we consider the upper term as a function of g1, · · · , gN

H(g1, · · · , gN ) =

N−1∑
i=1

(
fi+1 − fi
ri+1 − ri

)2

+

N−1∑
i=1

(
gi+1 − gi
ri+1 − ri

)2

(20)

with

fi =
∆hi∑N

j=1 Cijgjrj
(21)

that is

H(g1, · · · , gN ) =

N−1∑
i=1

 ∆hi+1∑N
j=1 Ci+1,jgjrj

− ∆hi∑N
j=1 Cijgjrj

ri+1 − ri

2

+

N−1∑
i=1

(
gi+1 − gi
ri+1 − ri

)2

(22)
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To minimize H(g1, · · · , gN ), we can make

∂H(g1, . . . , gN )

∂gk
= 0 (23)

for k = 1, . . . , N .
Then we will have 2N equations and 2N unknowns.

2.5 Using mathematical method to solve the problem
Now we have 2N equations and 2N unknowns. But it is difficult to get the exact result. Before
solving this problem, we can simplify those equations.

2.5.1 Using Taylor expansion to simplify cost function H(g)

Taylor expansion:

1

x+ a
=

1

a
− x

a2
+

x2

a3
+ · · ·

=
1

a

(
1− x

a
+

x2

a2

)
+ · · ·

(24)

and

1

x2 + 2ax+ a2
=

1

a2
− 2x

a3
+

3x2

a4
+ · · ·

=
1

a2

(
1− 2x

a
+

3x2

a2

)
+ · · ·

(25)

as x << a.

Using those two approximate equations, with

x = Cikgkrk (26)

or

x = Ci+1,kgkrk (27)

and

a =
∑
j ̸=k

Cijgjrj (28)

a1 =
∑
j ̸=k

Ci+1,jgjrj (29)

we can get

Hk(g1, · · · , gN ) =

n−1∑
i=1

1

(ri+1 − ri)2

(
∆h2

i+1

a21
(1− −2Ci+1,kgkrk

a1
)

)

+

n−1∑
i=1

1

(ri+1 − ri)2

(
∆h2

i

a2
(1− −2Cikgkrk

a
)

)

−
n−1∑
i=1

2

(ri+1 − ri)2
∆hi

a

∆hi+1

a1

(
1− Ci+1,kgkrk

a1
− Cikgkrk

a

)
+

(gk+1 − gk)
2

(rk+1 − rk)2
+

(gk − gk−1)
2

(rk − rk−1)2
+ · · ·

(30)
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2.5.2 Taking the derivative of H(g) of gk

Then we take the derivative of Hk(g1, . . . , gn) of gk and make the derivative equal to 0

∂Hk(g1, . . . , gn)

∂gk
= 0 (31)

n−1∑
i=1

1

(ri+1 − ri)2

(
∆h2

i+1

a21

−2Ci+1,krk
a1

)

+

n−1∑
i=1

1

(ri+1 − ri)2

(
∆h2

i

a2
−2Cikrk

a

)

−
n−1∑
i=1

2

(ri+1 − ri)2
∆hi

a

∆hi+1

a1

(
−Ci+1,krk

a1
− Cikrk

a

)
+

gk − gk+1

(rk+1 − rk)2
+

gk − gk−1

(rk − rk−1)2
= 0

(32)

2.5.3 Using the iteration method to solve the nonlinear equations

We will get nonlinear equations of g1, . . . , gn. Then we will use the iterative method to solve the
nonlinear equations.

The iterative method is giving g1, . . . , gn an initial value

g
(0)
i = c (33)

and then using the iterative formula to calculate and update the value

g
(m+1)
i = G

(m)
i (g

(m)
1 , . . . , g(m)

n ) (34)

After every calculation, the value g1, . . . , gn will change.

For example, we use the iterative formula as following.
The initial value

∆Wij = α (ri − r̄) (

n∑
j=1

Cij(ri − r̄)rj) (35)

α = 1 (36)
fi = ri − r̄ (37)
gj = rj − r̄ (38)

r̄ = mean(r) (39)

and g(0) is a sigmoid function

g
(0)
i = g(ri)

(0) =
max(r)−min(r)

1 + exp(max(r)+min(r)
2 − ri)

+ min(r)−mean(r) (40)

The iterative formula
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g
(m+1)
k =

(rk+1 − rk)
2(rk − rk−1)

2

(rk+1 − rk)2 + (rk − rk−1)2
(

g
(m)
k+1

(rk+1 − rk)2
+

g
(m)
k−1

(rk − rk−1)2
)

+
(rk+1 − rk)

2(rk − rk−1)
2

(rk+1 − rk)2 + (rk − rk−1)2
(

N−1∑
i=1

1

(ri+1 − ri)2
∆h2

i+1

(a
(m)
1 )2

2Ci+1,krk

a
(m)
1

+

N−1∑
i=1

1

(ri+1 − ri)2
∆h2

i

(a(m))2
2Cikrk
a(m)

−
N−1∑
i=1

2

(ri+1 − ri)2
∆hi

a(m)

∆hi+1

a
(m)
1

(
Ci+1,krk

a
(m)
1

+
Cikrk
a(m)

))

(41)

Here is one of the results

(a) g

(b) f

The yellow solid line is the desired result

∆Wij = figj

g(ri) = ri −mean(r)

The blue dotted line is calculated data using initially set the parameter as

∆Wij = f(ri)g(rj)
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g(rj)
(0) =

max(r)−min(r)

1 + exp(max(r)+min(r)
2 − rj)

+min(r)−mean(r)

The red point is the result after iteration.

We can see that the iterative result of g is very similar to the desired result. It is a linear
function. And the iterative result of f is also linear in this situation.

2.6 Additional benefit
Before any stimulus is given, the input of neuron i is

I(1) = Φ(Wr(1)) (42)

If we give a random stimulus, it will lead to the first change of synapse

∆W
(1)
ij (43)

If we give anther totally different stimulus, what will happen?
It will lead to another neural firing and the firing rate subjects to a distribution

∆W (1)r(2) = f(r
(1)
j )

N∑
j=1

g(r
(1)
j )r

(2)
j

= f(r
(1)
j )

N∑
j=1

(
r
(1)
j −mean(r(1))

)
r
(2)
j

= f(r
(1)
j )

N∑
j=1

(
r
(1)
j r

(2)
j −mean(r(1))r

(2)
j

)

= f(r
(1)
j )

 N∑
j=1

r
(1)
j r

(2)
j −mean(r(1))

n∑
j=1

r
(2)
j



(44)

In general, the expected value operator is not multiplicative, i.e. E[r(1)r(2)] is not necessarily
equal to E[r(1)] · E[r(2)]. However, if r(1) and r(2) are independent, then

E(r(1)r(2)) = E(r(1))E(r(2)) (45)

∆W (1)r(2) = 0

If we have two totally different stimuli, which will lead to the different reaction of the recurrent
network. If the firing rate is subjected to independent distribution, the first change of synapse will
have no influence on the second first rate.

2.7 The improvement for the convergence of iterative method
We find that

1

(ri+1 − ri)2
(46)

in the iterative formula will cause instability, so the result will not be convergent to the desired
result.
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g
(m+1)
k =

(rk+1 − rk)
2(rk − rk−1)

2

(rk+1 − rk)2 + (rk − rk−1)2
(

g
(m)
k+1

(rk+1 − rk)2
+

g
(m)
k−1

(rk − rk−1)2
)

+
(rk+1 − rk)

2(rk − rk−1)
2

(rk+1 − rk)2 + (rk − rk−1)2
(

N−1∑
i=1

1

(ri+1 − ri)2
∆h2

i+1

(a
(m)
1 )2

2Ci+1,krk

a
(m)
1

+

N−1∑
i=1

1

(ri+1 − ri)2
∆h2

i

(a(m))2
2Cikrk
a(m)

−
N−1∑
i=1

2

(ri+1 − ri)2
∆hi

a(m)

∆hi+1

a
(m)
1

(
Ci+1,krk

a
(m)
1

+
Cikrk
a(m)

))

(47)

Therefore, we set a threshold eps for the (ri+1 − ri)
2. If (ri+1 − ri)

2 < eps, we make it equal
to a fixed value.

Besides, the α in the

∆W (ri, rj) = αf(ri)g(rj) (48)

will have an influence on the result through changing the ∆hi

∆hi = αf(ri)(

n∑
j=1

Cijg(rj)rj) (49)

After many trials, we find it will induce a reasonable result when

α ≈ 1

N
(50)

The probability of convergence will apparently increase after the change of α.
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